# 引言 在构建信息检索和生成式 AI 应用时,Retrieval-Augmented Generation (RAG) 模型凭借其能够从知识库中检索相关信息并生成准确答案的强大能力,受到越来越多开发者的青睐。然而,实现端到端的本地 RAG 服务,需求的不只是合适的模型,还需要集成强大的用户界面和高效的推理框架。 在构建本地 RAG 服务时,利用易于部署的 Docker 方式,可以极大简化模型管理和服务集成。这里我们依赖 Open WebUI 提供的用户界面与模型推理服务,再通过 Ollama 来引入 bge-m3…